Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Experimental investigations of the effect of alkali fluids on montmorillonite, albite and quartz

JNC TN8400 2001-008, 36 Pages, 2001/03

JNC-TN8400-2001-008.pdf:2.92MB

Research on geologic disposal of high-level radioactive waste(HLW) has been underway in many countries. Bentonite exhibiting a low permeability, high swelling property and high sorption capacity for many radioelements is proposed as a buffer material in many countlies. Recently, cementitious materials are considered as candidate matelials for the geologic disposal of high-level radioactive waste. As the pH and the Ca, Na, K contents of hyperalkaline pore water from the cementitious materials are high, this hyperalkaline pore water would alter the buffer material. The main aim of this study is to investigate the effect of alkaline pore water into the bentonite. Used materials are montmorillonite, albite and quartz composing bentonite. These minerals mixed in a constant ratio (1:1wt%) made to react to distilled water and the alkali solutions (pH11-13). These studies have been conducted at temperatures of 50 - 150$$^{circ}$$C and run times of 10 - 200 day. XRD(X-ray powder diffraction) and SEM (Scanning Electron Microscopy) analyses were applied to studying the structure and quantitative data of each sample. From the result of this study, the main formed mineral of this experiment was analcime, which showed the tendency with a large amount of generation at a higher pH and temperature. Quantitative data of this study was conducted by X-ray powder diffraction method. THe order of the amount of the second analcime in each experiment is shown in the following. Montmorillonite and albite mixing test $$>$$ Montmorillonite test $$>$$ Montmorillonite and quartz mixing test Activation energies (E$$_{a}$$) using the quantitative data of each test are shown in the following. (1)Montmorillonite test : 54.9kJ/mol (2)Montmorillonite and albite mixing test : 51.9kJ/mol (3)Montmorillonite and quartz mixing test : 59.6kJ/mol

JAEA Reports

Fatigue properties of Mod.9Cr-1Mo steel; Result of low-cycle fatigue test in air

Furukawa, Tomohiro; ; Yoshida, Hidekazu;

PNC TN9410 93-042, 56 Pages, 1993/02

PNC-TN9410-93-042.pdf:3.36MB

Mod.9Cr-1Mo steel is a candidate material of once-through type steam generators for the Fast Breeder Reactors, and it is required to clarify low-cycle fatigue properties in air at high temperature on this material for structural design. So the tests were carried out for three heats (12mmt plate, 25mmt plate and 250mmt forged) on conditions that temperature is 450$$sim$$650$$^{circ}$$C and strain range is 0.4$$sim$$1.2%. Results obtained are su㎜araized as follows. (1)For cyclic stress-strain behavior of Mod.9Cr-1Mo steel cyclic hardening was. observed in the early stage, and after that changed to softening to failure. The behavior was similar to normalized and tempered 2.25Cr-1Mo steel. (2)Low-cycle fatigue strength of Mod.9Cr-1Mo steel in air was remarkably higher than that of 2.25Cr-1Mo steel, and almost same as much as that of SUS304 steel. Moreover, fatigue life of Mod.9Cr-1Mo steel was longer than that of 9Cr-2Mo or Low C-9Cr-1Mo-Nb-V steel under low strain conditions. (3)In the case of Mod.9Cr-1Mo forged steel, the influence of the sampling position and direction of specimens was not effective. These results were reflected to prepare of tentative material strength standard in 1992.

JAEA Reports

Materials properties data sheet (No. F02); Creep properties data on Mod.9Cr-1Mo steels (Base Metal)

; ; *; *; *; Yoshida, Eiichi;

PNC TN9450 91-010, 259 Pages, 1991/10

PNC-TN9450-91-010.pdf:4.55MB

In order to advancement in materials strength standard on elevated temperature design guide of the FBRs and evaluation method of materials strength behavior, this report are presented about the creep properties of Mod.9Cr-1Mo steels for steam generator, based on the R&D results obtained through the activities of material tests. Contents of the data sheet are as follows; Material : Mod.9Cr-1Mo steels (Base Metal) Plate 7 Heats (F2, F6, F7, F9, F10, NSC1, NSC2) Forging 8 Heats (F4, F5, F8, F11, VIM, ESR, F520, F550) Tube 1 Heats (F3) Test temperature : 450$$sim$$650$$^{circ}$$C Test method : According to JIS and FBR Metallic Materials Test Method Test environment : In Air and in Sodium Number of deta : 314 points

JAEA Reports

Materials properties data sheet (No.B 01); Tensile properties data on FBR grade SUS316 (Base Metal)

; ; *; *; *; *; Yoshida, Eiichi

PNC TN9450 91-008, 38 Pages, 1991/09

PNC-TN9450-91-008.pdf:0.75MB

In order to advancement in materials strength standard on elevated temperature design guide of the FBRs and evaluation method of materials strength behavior, this report are presented about the tensile properties of FBR grade SUS316, based on the R&D results obtained through the activities of material tests. Contents of the data sheet are as follows; (1)Material : FBR grade SUS316 (Base Metal) B7 Heat 1,000mm$$times$$1,000㎜$$times$$50mm$$^{t}$$(Plate) B8 Heat 1,000㎜$$times$$1,000mm$$times$$40mm$$^{t}$$(Plate) B9 Heat 1,000mm$$times$$1,000㎜$$times$$25㎜$$^{t}$$(Plate) (2)Test temperature : RT$$sim$$750$$^{circ}$$C (3)Test method : According to JIS and FBR Metallic Materials Test Methods (4)Number of deta : 64 points

JAEA Reports

Materials properties data sheet (No.F01); Low-cycle fatigue properties data on Mod.9Cr-1Mo steel in air and in sodium

; Hirakawa, Yasushi; Furukawa, Tomohiro; *; *; *; *

PNC TN9450 91-004, 71 Pages, 1991/07

PNC-TN9450-91-004.pdf:1.82MB

In order to advancement in materials strength standard on elevated temperature design guide of the FBRs and evaluation method of materials strength behavior, this report are presented about the low-cycle fatigue properties of Mod.9Cr-1Mo steel, based on the R&D results obtained through the sctivities of material tests. Contents of the data sheet are as follows; [Material ; Mod.9Cr-1Mo steel(SR)] F2 Heat 1,000$$times$$1,000$$times$$12mm$$^{t}$$(Plate) F4 Heat 1,000$$times$$1,000$$times$$250mm$$^{t}$$(Forging) F6 Heat 1,000$$times$$1,000$$times$$25mm$$^{t}$$(Plate) [Environment; In Air and in Sodium] [Test temperature ; 450, 500, 550, 600 and 650$$^{circ}$$C] [Strain rate ; 0.1%/sec (10$$^{-3}$$mm/mm/sec)] [Strain range ; 0.38% $$sim$$ 1.86%] [Number of deta ; 83 points]

5 (Records 1-5 displayed on this page)
  • 1